

Graham Cormode

University of Warwick G.Cormode@Warwick.ac.uk

The case for "Big Data" in one slide

- "Big" data arises in many forms:
 - Medical data: genetic sequences, time series
 - Activity data: GPS location, social network activity
 - Business data: customer behavior tracking at fine detail
 - Physical Measurements: from science (physics, astronomy)
- Common themes:
 - Data is large, and growing
 - There are important patterns and trends in the data
 - We want to (efficiently) find patterns and make predictions
- "Big data" is about more than simply the volume of the data
 - But large datasets present a particular challenge for us!

Computational scalability

- The first (prevailing) approach: scale up the computation
- Many great technical ideas:
 - Use many cheap commodity devices
 - Accept and tolerate failure
 - Move code to data, not vice-versa
 - MapReduce: BSP for programmers
 - Break problem into many small pieces
 - Add layers of abstraction to build massive DBMSs and warehouses
 - Decide which constraints to drop: noSQL, BASE systems
- Scaling up comes with its disadvantages:
 - Expensive (hardware, equipment, energy), still not always fast
- This talk is not about this approach!

Downsizing data

A second approach to computational scalability: scale down the data!

- A compact representation of a large data set
- Capable of being analyzed on a single machine
- What we finally want is small: human readable analysis / decisions
- Necessarily gives up some accuracy: approximate answers
- Often randomized (small constant probability of error)
- Much relevant work: samples, histograms, wavelet transforms
- Complementary to the first approach: not a case of either-or
- Some drawbacks:
 - Not a general purpose approach: need to fit the problem
 - Some computations don't allow any useful summary

Outline for the talk

Part 1: Few examples of compact summaries (no proofs)

- Sketches: Bloom filter, Count-Min, AMS
- Sampling: count distinct, distinct sampling
- Summaries for more complex objects: graphs and matrices
- Part 2: Some recent work on summaries for ML tasks
 - Distributed construction of Bayesian models
 - Approximate constrained regression via sketching

Summary Construction

• A 'summary' is a small data structure, constructed incrementally

- Usually giving approximate, randomized answers to queries
- Key methods for summaries:
 - Create an empty summary
 - Update with one new tuple: streaming processing
 - Merge summaries together: distributed processing (eg MapR)
 - Query: may tolerate some approximation (parameterized by ε)
- Several important cost metrics (as function of ε, n):
 - Size of summary, time cost of each operation

Bloom Filters

Bloom filters [Bloom 1970] compactly encode set membership

- E.g. store a list of many long URLs compactly
- k hash functions map items to m-bit vector k times
- Update: Set all k entries to 1 to indicate item is present
- Query: Can lookup items, store set of size n in O(n) bits
 - Analysis: choose k and size m to obtain small false positive prob

- Duplicate insertions do not change Bloom filters
- Can be merge by OR-ing vectors (of same size)

Bloom Filters Applications

- Bloom Filters widely used in "big data" applications
 - Many problems require storing a large set of items
- Can generalize to allow deletions
 - Swap bits for counters: increment on insert, decrement on delete
 - If representing sets, small counters suffice: 4 bits per counter
 - If representing multisets, obtain (counting) sketches
- Bloom Filters are an active research area
 - Several papers on topic in every networking conference...

Count-Min Sketch

- Count Min sketch [C, Muthukrishnan 04] encodes item counts
 - Allows estimation of frequencies (e.g. for selectivity estimation)
 - Some similarities in appearance to Bloom filters
- Model input data as a vector x of dimension U
 - Create a small summary as an array of $\mathbf{w} \times \mathbf{d}$ in size
 - Use d hash function to map vector entries to [1..w]

Count-Min Sketch Structure

- Update: each entry in vector x is mapped to one bucket per row.
- Merge two sketches by entry-wise summation
- Query: estimate x[j] by taking min_k CM[k,h_k(j)]
 - Guarantees error less than $\varepsilon \|x\|_1$ in size $O(1/\varepsilon)$
 - Probability of more error reduced by adding more rows

Generalization: Sketch Structures

Sketch is a class of summary that is a linear transform of input

- Sketch(x) = Sx for some matrix S
- Hence, Sketch($\alpha x + \beta y$) = α Sketch(x) + β Sketch(y)
- Trivial to update and merge
- Often describe S in terms of hash functions
 - S must have compact description to be worthwhile
 - If hash functions are simple, sketch is fast
- Analysis relies on properties of the hash functions
 - Seek "limited independence" to limit space usage
 - Proofs usually study the expectation and variance of the estimates

Sketching for Euclidean norm

- AMS sketch presented in [Alon Matias Szegedy 96]
 - Allows estimation of F_2 (second frequency moment) aka $||x||_2^2$
 - Leads to estimation of (self) join sizes, inner products
 - Used at the heart of many streaming and non-streaming applications achieves dimensionality reduction ('Johnson-Lindenstrauss lemma')
- Here, describe the related CountSketch by generalizing CM sketch
 - − Use extra hash functions $g_1...g_d \{1...U\} \rightarrow \{+1,-1\}$
 - Now, given update (j,+c), set $CM[k,h_k(j)] += c^*g_k(j)$
- Estimate squared Euclidean norm $(F_2) = \text{median}_k \sum_i CM[k,i]^2$
 - Intuition: gk hash values cause 'cross-terms' to cancel out, on average

•c*a₁(i)

+c*g₃(j

+c*g₂()

⊭c^{*}g₄(j)

h₁(J

 $h_d(j)$

j,+C

- The analysis formalizes this intuition
- median reduces chance of large error

L₀ Sampling

- L_0 sampling: sample item i with prob $(1\pm\epsilon) f_i^0/F_0$ (# distinct items)
 - i.e., sample (near) uniformly from items with non-zero frequency
 - Challenging when frequencies can increase and decrease
- General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05]
 - Sub-sample all items (present or not) with probability p
 - Generate a sub-sampled vector of frequencies f_p
 - Feed f_p to a *k-sparse recovery* data structure (sketch summary)
 - Allows reconstruction of f_p if $F_0 < k$, uses space O(k)
 - If f_p is k-sparse, sample from reconstructed vector
 - Repeat in parallel for exponentially shrinking values of p

Sampling Process

Exponential set of probabilities, p=1, ½, ¼, 1/8, 1/16... 1/U

- Want there to be a level where k-sparse recovery will succeed
 - Sub-sketch that can decode a vector if it has few non-zeros
- At level p, expected number of items selected S is pF_0
- Pick level p so that $k/3 < pF_0 \le 2k/3$

Analysis: this is very likely to succeed and sample correctly

Graph Sketching

- Given L₀ sampler, use to sketch (undirected) graph properties
- Connectivity: find the connected components of the graph
- Basic alg: repeatedly contract edges between components
 - Implement: Use L₀ sampling to get edges from vector of adjacencies
 - One sketch for the adjacency list for each node
- Problem: as components grow, sampling edges from components most likely to produce internal links

Graph Sketching

- Idea: use clever encoding of edges [Ahn, Guha, McGregor 12]
- Encode edge (i,j) as ((i,j),+1) for node i<j, as ((i,j),-1) for node j>i
- When node i and node j get merged, sum their L₀ sketches
 - Contribution of edge (i,j) exactly cancels out

- Only non-internal edges remain in the L₀ sketches
- Use independent sketches for each iteration of the algorithm
 - Only need O(log n) rounds with high probability
- Result: O(poly-log n) space per node for connected components

Matrix Sketching

Given matrices A, B, want to approximate matrix product AB

- Measure the normed error of approximation C: ||AB C||
- Main results for the Frobenius (entrywise) norm ||·||_F
 - $\|\mathbf{C}\|_{\mathsf{F}} = (\sum_{i,j} \mathbf{C}_{i,j}^{2})^{\frac{1}{2}}$
 - Results rely on sketches, so this entrywise norm is most natural

Direct Application of Sketches

- Build AMS sketch of each row of A (A_i), each column of B (B^j)
- Estimate C_{i,i} by estimating inner product of A_i with B^j
 - Absolute error in estimate is $\varepsilon \|A_i\|_2 \|B^j\|_2$ (whp)
 - Sum over all entries in matrix, Frobenius error is $\varepsilon \|A\|_{F} \|B\|_{F}$
- Outline formalized & improved by Clarkson & Woodruff [09,13]
 - Improve running time to linear in number of non-zeros in A,B

More Linear Algebra

- Matrix multiplication improvement: use more powerful hash fns
 - Obtain a single accurate estimate with high probability
- Linear regression given matrix A and vector b: find x ∈ R^d to (approximately) solve min_x ||Ax − b||
 - Approach: solve the minimization in "sketch space"
 - From a summary of size $O(d^2/\epsilon)$ [independent of rows of A]
- Frequent directions: approximate matrix-vector product [Ghashami, Liberty, Phillips, Woodruff 15]
 - Use the SVD to (incrementally) summarize matrices
- The relevant sketches can be built quickly: proportional to the number of nonzeros in the matrices (input sparsity)
 - Survey: Sketching as a tool for linear algebra [Woodruff 14]

Lower Bounds

While there are many examples of things we can summarize...

- What about things we can't do?
- What's the best we could achieve for things we can do?
- Lower bounds for summaries from communication complexity
 - Treat the summary as a **message** that can be sent between players
- Basic principle: summaries must be proportional to the size of the information they carry
 - A summary encoding N bits of data must be at least N bits in size!

Part 2: Applications in Machine Learning

1. Distributed Streaming Machine Learning

- Data continuously generated across distributed sites
- Maintain a model of data that enables predictions
- Communication-efficient algorithms are needed!

Continuous Distributed Model

- Site-site communication only changes things by factor 2
- **Goal:** Coordinator *continuously tracks* (global) function of streams
 - Achieve communication $poly(k, 1/\epsilon, log n)$
 - Also bound space used by each site, time to process each update

Challenges

- Monitoring is Continuous...
 - Real-time tracking, rather than one-shot query/response
- ...Distributed...
 - Each remote site only observes part of the global stream(s)
 - Communication constraints: must minimize monitoring burden
- ...Streaming...
 - Each site sees a high-speed local data stream and can be resource (CPU/memory) constrained

...Holistic...

- Challenge is to monitor the complete global data distribution
- Simple aggregates (e.g., aggregate traffic) are easier

Graphical Model: Bayesian Network

- Succinct representation of a joint distribution of random variables
- Represented as a Directed Acyclic Graph
 - Node = a random variable
 - Directed edge = conditional dependency
- Node independent of its nondescendants given its parents
 e.g. (WetGrass IL Cloudy) | (Sprinkler, Rain)
- Widely-used model in Machine Learning for Fault diagnosis, Cybersecurity

Weather Bayesian Network

https://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

Conditional Probability Distribution (CPD)

Parameters of the Bayesian network can be viewed as a set of tables, one table per variable

Goal: Learn Bayesian Network Parameters

Distributed Bayesian Network Learning

Parameters changing with new stream instance

Naïve Solution: Exact Counting (Exact MLE)

- Each arriving event at a site sends a message to a coordinator
 - Updates counters corresponding to all the value combinations from the event
- Total communication is proportional to the number of events
 Can we reduce this?
- Observation: we can tolerate some error in counts
 - Small changes in large enough counts won't affect probabilities
 - Some error already from variation in what order events happen
- Replace exact counters with approximate counters
 - A foundational distributed question: how to count approximately?

Distributed Approximate Counting

[Huang, Yi, Zhang PODS'12]

- We have k sites, each site runs the same algorithm:
 - For each increment of a site's counter:
 - Report the new count n'_i with probability p
 - Estimate n_i as $n'_i 1 + 1/p$ if $n'_i > 0$, else estimate as 0
- Estimator is unbiased, and has variance less than 1/p²
- Global count n estimated by sum of the estimates n_i
- How to set p to give an overall guarantee of accuracy?
 - Ideally, set p to $\sqrt{k \log 1/\delta} = 1 \delta \sin \theta$
 - Work with a coarse approximation of n up to a factor of 2
- Start with p=1 but decrease it when needed
 - Coordinator broadcasts to halve p when estimate of n doubles
 - Communication cost is proportional to $O(k \log(n) + \sqrt{k}/\epsilon)$

Challenge in Using Approximate Counters

How to set the approximation parameters for learning Bayes nets?

1. **Requirement:** maintain an accurate model

(i.e. give accurate estimates of probabilities)

$$e^{-\epsilon} \leq \frac{\tilde{P}(\boldsymbol{x})}{\hat{P}(\boldsymbol{x})} \leq e^{\epsilon}$$

where:

 ϵ is the global error budget,

x is the given any instance vector,

 $\tilde{P}(\boldsymbol{x})$ is the joint probability using approximate algorithm,

 $\hat{P}(\boldsymbol{x})$ is the joint probability using exact counting (MLE)

2. Objective: minimize the communication cost of model maintenance We have freedom to find different schemes to meet these requirements

ϵ –Approximation to the MLE

Expressing joint probability in terms of the counters:

$$\widehat{P}(\boldsymbol{x}) = \prod_{i=1}^{n} \frac{C(X_i, par(X_i))}{C(par(X_i))} \qquad \widetilde{P}(\boldsymbol{x}) = \prod_{i=1}^{n} \frac{A(X_i, par(X_i))}{A(par(X_i))}$$

where:

- A is the approximate counter
- C is the exact counter
- $par(X_i)$ are the parents of variable X_i
- Define local approximation factors as:
 - α_i : approximation error of counter $A(X_i, par(X_i))$
 - β_i : approximation error of parent counter $A(par(X_i))$
- **Το achieve an** *ε*-approximation to the MLE we need:

 $e^{-\epsilon} \leq \prod_{i=1}^{n} ((1 \pm \alpha_i) \cdot (1 \pm \beta_i)) \leq e^{\epsilon}$

We proposed three algorithms [C, Tirthapura, Yu ICDE 2018]:

- Baseline algorithm: divide error budgets uniformly across all counters, α_i, β_i ∝ ε/n
- Uniform algorithm: analyze total error of estimate via variance, rather than separately, so α_i , $\beta_i \propto \epsilon/\sqrt{n}$
- Non-uniform algorithm: calibrate error based on cardinality of attributes (J_i) and parents (K_i), by applying optimization problem

Algorithms Result Summary

Algorithm	Approx. Factor of Counters	Communication Cost (messages)
Exact MLE	None (exact counting)	O(mn)
Baseline	$O(\epsilon/n)$	$O(n^2 \cdot \log m / \epsilon)$
Uniform	$O(\epsilon/\sqrt{n})$	$O\left(n^{1.5} \cdot \log m /\epsilon\right)$
Non-uniform	$O\left(\epsilon \cdot \frac{J_i^{1/3} K_i^{1/3}}{\alpha}\right), O\left(\epsilon \cdot \frac{K_i^{1/3}}{\beta}\right)$	at most Uniform

 ϵ : error budget, n: number of variables, m: total number of observations J_i : cardinality of variable X_i , K_i : cardinality of X_i 's parents α is a polynomial function of J_i and K_i , β is a polynomial function of K_i

Empirical Accuracy

real world Bayesian networks Alarm (small), Hepar II (medium)

Communication Cost (training time)

training time vs. number of sites (500K training instances, error budget: 0.1) time cost (communication bound) on AWS cluster

Conclusions

- Communication-Efficient Algorithms to maintaining a provably good approximation for a Bayesian Network
- Non-Uniform approach is (marginally) the best, and adapts to the structure of the Bayesian network
- Experiments show reduced communication and similar prediction errors as the exact model
- Algorithms can be extended to perform classification and other ML tasks
- Open problems: extend to richer models, learning the graph

2. Sketching for Constrained Regression

- Linear algebra computations are key to much machine learning
- We seek efficient scalable linear algebra approximate solutions making use of sketching algorithms (random projections)
 - We find efficient approximate algorithms for constrained regression
 - We show new approaches based on sketching which are fast and accurate

Constrained Least Squares Regression

- **Regression**: Input is $A \in \mathbb{R}^{n \times d}$ and target vector $b \in \mathbb{R}^{n}$
 - Least Squares formulation: find $x = \operatorname{argmin} ||Ax b||_2$
 - Takes time $O(nd^2)$ centralized to solve via normal equations
- Can be approximated via reducing dependency on n by compressing into columns of length roughly d/ϵ^2 (JLT)
 - Can be performed distributed with some restrictions
- Constrained regression imposes additional constraints:
 - x must lie within a (convex) set C
 - Good solution methods via convex optimization, with a time cost

Regression via Sketching

- Sketch-and-solve paradigm: solve x' = argmin_{x ∈ C} ||S(Ax-b)||²
 - Find the x that seems to solve the problem under sketch matrix S
 - Can prove that it finds $||Ax' b||^2 ≤ (1+ε) ||Ax_{OPT} b||^2$ i.e. a solution whose cost is near optimal
 - However, does not guarantee to approximate vector x_{OPT} itself
- Iterative Hessian Sketch [Pilanci&Wainwright 16]: iterate to solve
 - $x^{t+1} = \operatorname{argmin}_{x \in C} \frac{1}{2} \| (S^{t+1}A)(x x^{t}) \|^{2} \langle A^{T}(b Ax^{t}), x x^{t} \rangle$
 - Use fresh sketches $(S^1, S^2, S^3...)$ to move towards the solution
 - Faster than exact solution since (SA) is much smaller than A
 - Will find an x' that is close to x_{OPT}

Instantiating IHS

Iterative Hessian Sketch imposes some requirements on sketch

- Subgaussianity: E[SS^T] is a scaled identity, and rows of the sketch do not stretch arbitrary vectors with high probability
- Spectral bound: E[S^T(SS^T)⁻¹S] is bounded by a scaled identity
- Several sketches are known to meet these conditions:
 - (Dense) Gaussian sketches: entries are IID Gaussian
 - Subsampled Randomized Hadamard Transform (SRHT): composition of a sampling and sign-flipping with the Hadamard transform
- We show that CountSketch also works [Cormode, Dickens 19]
 - Not every step of IHS will preserve all directions, but with sufficient iterations, we converge
 - CountSketch is fast(er) when the input is sparse

Experimental Study

- We evaluate LASSO regression with regularization parameter λ:
 x_{OPT} = argmin_{x in R^d} ½ ||Ax-b||₂² + λ||x||₁
- We evaluate on synthetic and real data:
 - YearPredictionsMSD: 515K x 91, fully dense
 - Slice: 53K x 387, 0.36 dense
 - w8a: 50K x 301, 0.042 dense
- Main parameter is how big to make the sketches?
 - We consider multiples of the input dimension, d: 4d to 10d

IHS with iterations for LASSO

- All sketch methods converge to a common error level after sufficiently many iterations on synthetic data
- Number of iterations is only part of the story: not all iterations are equal(ly fast)

IHS accuracy versus time for LASSO

- CountSketch approach shows rapid convergence to approximate solution
- Larger sketch achieves better error in same time
- CountSketch performs well across different datasets with differing sparsity levels

Current Directions in Data Summarization

- Sparse representations of high dimensional objects
 - Compressed sensing, sparse fast fourier transform
- General purpose numerical linear algebra for (large) matrices
 - k-rank approximation, regression, PCA, SVD, eigenvalues
- Summaries to verify full calculation: a 'checksum for computation'
- Geometric (big) data: coresets, clustering, machine learning
- Use of summaries in large-scale, distributed computation
 - Build them in MapReduce, Continuous Distributed models
- Summaries with privacy to compactly gather accurate data: extra randomization is used to hide personal information

Final Summary

- There are two approaches in response to growing data sizes
 - Scale the computation up; scale the data down
- Summarization can be a useful tool in machine learning
 - Allows approximate solutions over distributed data
- Many open problems in this broad area
 - Machine learning/linear algebra a rich source of problems

European Research Council Established by the European Commission

46

Engineering and Physical Sciences Research Council

